Infrared and upconversion spectroscopic studies of high Ercontent transparent YAG ceramic
نویسندگان
چکیده
In this article, we report the detailed spectroscopic studies of high Ercontent (50%) transparent YAG ceramic co-doped with nominal Cr content (0.1 mol %). Various radiative and non-radiative spectroscopic properties such as radiative decay time, fluorescence branching ratio, emission/absorption cross sections, internal radiative quantum yields of the infrared and the upconverted emission bands are explored using standard experimental and theoretical methods and compared with YAG single crystal. Results show that although the non-radiative losses are high for 50% Er doped ceramic; several radiative spectral properties are almost in agreement with those for the single crystal YAG. Furthermore, because of the low dopant concentration of Cr, the sensitizing effect of Cr was not observed. ©2011 Optical Society of America OCIS codes: (140.3613) Lasers, upconversion; (160.4670) Optical materials; (160.4760) Optical properties. References and links 1. D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19(13-14), 2551–2562 (1999). 2. T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium-aluminum-garnet fine powder,” Japanese Patent 10–101333 (1998). 3. G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd in transparent YAG ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004). 4. M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er in Yb3Al5O12 crystal,” Opt. Mater. 30(5), 703–706 (2008). 5. M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91(2), 249–256 (2008). 6. J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett. 91(15), 151107 (2007). 7. E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng. 44(6), 064202–064212 (2005). 8. V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater. 30(11), 1781–1786 (2008). 9. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett. 86(13), 131115 (2005). 10. W. Q. Shi, M. Bass, and M. Birnbaum, “Effects of energy transfer among Er ions on the fluorescence decay and lasing properties of heavily doped Er:Y3AI5012,” J. Opt. Soc. Am. B 7(8), 1456–1462 (1990). 11. V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron. 16(2), 274–276 (1986). 12. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24(6), 385–387 (1999). 13. J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er:Y3Al5O12 ceramics,” Ceram. Int. 37(1), 119–125 (2011). #150115 $15.00 USD Received 30 Jun 2011; revised 12 Aug 2011; accepted 10 Oct 2011; published 17 Oct 2011 (C) 2011 OSA 1 November 2011 / Vol. 1, No. 7 / OPTICAL MATERIALS EXPRESS 1272 14. J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int. 37(2), 513–519 (2011). 15. J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int. 36(1), 193–197 (2010). 16. G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004). 17. L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er:Yb transparent ceramics,” J. Rare Earths 24(6), 732–735 (2006). 18. D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er(4f ) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys. 97(12), 123501 (2005). 19. T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys. 46(1), 156–160 (2007). 20. T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun. 268(1), 155–159 (2006). 21. H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr and Nd co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 45(1A), 133–135 (2006). 22. Z. J. Kiss and R. C. Duncan, “Cross-pumped Cr/Nd YAG laser crystal,” Appl. Phys. Lett. 5(10), 200–202 (1964). 23. R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr-sensitization of the 3μm Er:YAG laser,” J. Phys. Colloq. 1(7), C7.363–C7.366 (1991). 24. H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem. 49(3), 269–273 (1989). 25. J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er-doped garnets,” Phys. Rev. B Condens. Matter 48(21), 15561–15573 (1993). 26. Y. Yu, Z. Wu, and S. Zhang, “Concentration effects of Er ion in YAG:Er laser crystal,” J. Alloy. Comp. 302(12), 204–208 (2000). 27. H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er ions in Er:YAG and Er:YAlO3,” Physica B 324(1-4), 43–48 (2002). 28. http://www.baikowski.com/ 29. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962). 30. G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962). 31. A. A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer, 1981). 32. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953). 33. C. Wei, Doped Nanomaterials and Nanodevices, Photonics and Nanodevices (American Scientific Publishers, 2010).
منابع مشابه
SPECTROSCOPIC INVESTIGATION OF Sm IN YAG CERAMIC
An analysis of the high resolution optical spectra (at 10 or 300 K) of Sm in YAG transparent ceramics is presented. The peculiarities of the spectra in ceramics are outlined. Accurate data for the application of Sm: YAG ceramic to suppress parasitic oscillations in high power Nd: YAG ceramic composite lasers are obtained.
متن کاملThe Role of Factors Influencing the Optical Properties of Yttrium Aluminum Garnet Ceramic Body
Yttrium Aluminum Garnet (Y3Al5O12) is a transparent ceramic with a wide range of applications such as high mechanical strength windows, high power laser sources and radiation detectors. The most important challenge in making these ceramics is the problem of low light transmittance, especially in the visible area in the range of 400 to 700 nm, which is greatly affected and reduced by various fac...
متن کاملThree-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials.
Using confocal Raman and fluorescence spectroscopic imaging in 3-dimensions, we show direct evidence of inhomogeneous Nd(3+) distribution across grain boundaries (GBs) in Nd(3+):YAG laser ceramics. It is clearly shown that Nd(3+) segregation takes place at GBs leading to self-fluorescence quenching which affects a volume fraction as high as 20%. In addition, we show a clear trend of increasing ...
متن کاملFT-Raman Spectroscopic Studies of Nd/YAG Laser Irradiated Human Dental Enamel
FTR-Raman Spectra of human dental enamel, both laser-irradiated and untreated, are reported. Spectra are compared with hydroxyapatite. It is evident that unlike the CO2 laser, the Nd/YAG laser does not induce any chemical change in dental enamel.
متن کاملThe effect of slip casting parameters on the ultrafine microstructure and density of pore-free YAG ceramic obtained by vacuum sintering
In this study, the effect of slip casting parameters on the ultrafine microstructure and the density of pore-free YAG ceramic was evaluated. A stable, high concentrated aqueous YAG slurry using Dolapix-CE64 as a dispersant was prepared. The effect of dispersant concentration as well as the solid load on the stability and rheological behavior of the slurry was also studied. The optimal dispersan...
متن کامل